
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
云计算技术是目前大多数软件开发程序员都在学习的一个互联网技术,下面我们就通过案例分析来了解一下,云计算技术应用需要注意哪些问题。
1.自动扩展服务器
用户无需将应用程序容器化,并在Kubernetes中运行它们,以便在云中自动扩展它们。大多数公有云允许用户通过添加(或减少)实例或增加(或减少)实例大小,根据使用情况自动向上(或向下)扩展虚拟机和服务。
2.行星级的数据库
全球主要的公有云供应商和数据库供应商已经实施了行星级的分布式数据库,这些数据库具有数据结构、冗余互连和分布式共识算法等基础,使它们能够高效地工作,并具有高达5个9的可靠性(99.999%的正常运行时间)。特定于云计算的示例包括GoogleCloudSpanner(关系)、AzureCosmosDB(多模型)、AmazonDynamoDB(键值和文档)和AmazonAurora(关系)。供应商示例包括CockroachDB(关系)、PlanetScale(关系)、Fauna(关系/无服务器)、Neo4j(图形)、MongoDBAtlas(文档)、DataStaxAstra(宽列)和CouchbaseCloud(文档)。
3.混合服务
对数据中心进行大量投资的企业通常希望将其现有的应用程序和服务扩展到云平台中,而不是用云服务取代它们。主要的云计算供应商现在都提供了实现这一目标的方法,包括使用特定的混合服务(例如,可以跨越数据中心和云计算的数据库)以及连接到公有云的内部部署服务器和边缘云资源,通常称为混合云。
4.可扩展的机器学习训练和预测
机器学习训练(尤其是深度学习)通常需要数小时到数周的大量计算资源。另一方面,机器学习预测需要每秒钟的计算资源,除非进行批量预测。使用云计算资源通常是完成模型训练和预测的便捷方式。
5.云端GPU、TPU和FPGA
在CPU集群上,使用大型模型和非常大的数据集进行准确训练所需的深度学习通常需要一周以上的时间。GPU、TPU和FPGA都可以显著地缩短训练时间,并且将它们放在云端可以在需要时轻松使用它们。
6.预训练的人工智能服务
许多人工智能服务可以通过预训练模型很好地执行,例如语言翻译、文本到语音和图像识别。所有主要的云服务都提供基于稳健模型的预训练的人工智能服务。
7.可定制的人工智能服务
预训练的人工智能服务有时并不能完全满足用户的需求。迁移学习仅在现有模型之上训练几个神经网络层,与从头开始训练模型相比,它可以相对快速地为用户提供定制服务。同样,主要的云服务提供商都提供迁移学习,尽管他们的名字并不相同。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。