
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,越来越多的企业都引入了人工智能等互联网新技术,而本文我们就通过案例分析来简单了解一下,促进人工智能技术发展的原因都有哪些。
1.机器学习
机器学习是一种自动创建分析模型的数据分析类型。这是一个人工智能领域,其基础是计算机可以从数据中学习、识别模式,并在很少或没有人工输入的情况下做出选择。
机器学习的应用:大多数处理大量数据的企业都承认机器学习技术的重要性。
医疗保健服务:由于可穿戴设备和传感器的发展可以利用数据实时分析患者的健康状况,机器学习成为医疗保健领域的快速增长趋势。医学可以使用该技术来检查数据,并发现可能导致更好诊断和治疗的趋势或危险信号。
零售:零售行业可以使用机器学习来评估消费者的购买历史,他们的网站会根据消费者之前的购买情况推荐可能喜欢的商品。零售商使用机器学习来收集、评估和应用数据来定制购物体验、执行营销活动、定价优化、商品供应计划和消费者洞察。
2.深度学习
深度学习是一种机器学习,在其应用中,计算机被训练执行类似人类的任务,例如语音识别、图片识别和预测。深度学习设置了有关数据的基本参数,并通过检测利用多层处理的模式来训练计算机自行学习,而不是通过预先设定的模式安排数据。
深度学习的应用:
自然语言处理:多年来,深度学习的关键组成部分神经网络一直被用于处理和解释文本。这种方法是文本挖掘的一个子集,可用于在各种来源中查找模式,其中包括消费者投诉、医疗记录和新闻报道等。
图像识别:自动图片字幕和场景描述是图像识别的两个实际应用。在自动驾驶汽车中采用360度摄像头技术也将增强图片识别能力。
3.自然语言处理(NLP)
自然语言处理(NLP)是一个人工智能领域,可以帮助计算机理解、解释和操纵人类语言。为了弥合人类交流和机器理解之间的差距,自然语言处理(NLP)依赖于多个领域,包括计算机科学和计算语言学。自然语言处理并不是一个新学科,但由于人们对人机通信的兴趣日益浓厚,以及海量数据的可用性、强大的计算能力和改进的算法,自然语言处理技术正在迅速发展。
自然语言处理(NLP)的应用:
自然语言处理(NLP)在日常生活中的例子:自然语言处理(NLP)在人们的日常生活中有广泛的常见和实际应用。贝叶斯垃圾邮件过滤是一种统计自然语言处理方法,可将垃圾邮件术语与合法电子邮件进行比较以识别垃圾邮件。人们是否曾经错过一些重要电话,然后在电子邮件收件箱或智能手机应用程序上阅读语音邮件记录?这就是语音到文本的转换,也是自然语言处理(NLP)的一项功能。
4.计算机视觉
计算机视觉是一个人工智能领域,它训练计算机分析和理解图像。机器可以使用来自摄像头和视频的数字图片以及深度学习模型可靠地检测和分类事物,然后对它们观察到的内容做出反应。在许多领域,计算机视觉接近并超越了人类的视觉能力,从识别人到分析足球比赛的实况。
计算机视觉的应用:
图片分割将图像分成许多区域或片段,每个区域或片段都可以独立进行研究。
面部识别是一种复杂的对象检测形式,它不仅可以识别图片中的特定人物。
边缘检测是一种确定项目或景观的边缘以更好地识别图像中内容的方法。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。