
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,越来越多的人都在学习人工智能技术,而今天我们就一起来了解一下,人工智能技术发展都有哪些特点。
1、深层强化学习:与环境互动解决业务问题
它是什么:一种通过观察、行动和奖励与环境相互作用来学习的神经网络。深层强化学习(DRL)已经被用来学习游戏策略,比如Atari和Go-包括著名的AlphaGo程序,它击败了人类冠军。
为何重要:DRL是所有学习技术中通用的,因此它可以应用于大多数商业应用中。它需要比其他技术更少的数据来训练它的模型。更值得注意的是,它可以通过模拟来训练,这样就完全不需要有标签的数据了。鉴于这些优点,期望看到更多的业务应用程序DRL与基于Agent的仿真相结合在未来的一年里。
2、生成对抗性网络:配对神经网络促进学习和减轻处理负荷
它是什么:A生成对抗性网络GaN(GaN)是一种无监督的深度学习系统,它是作为两个相互竞争的神经网络来实现的。一个网络,即生成器,创建了与真实数据集完全相同的假数据。二个网络,即鉴别器,接收真实和综合的数据。随着时间的推移,每个网络都在改进,使这对网络能够学习给定数据集的整个分布。
为何重要:GANS为更大范围的无监督任务打开了深度学习的大门,在这些任务中,标签数据并不存在,或者获取起来太昂贵。它们还减少了深层神经网络所需的负载,因为这两个网络分担了负担。预计会有更多的商业应用程序,如网络检测,聘用甘斯。
3、精益和增强数据学习:解决标签数据挑战
它是什么:机器学习(尤其是深入学习)的大挑战是提供大量的标记数据来训练系统。两种广泛的技术可以帮助解决这一问题:(1)合成新的数据;(2)将为一个任务或领域训练的模型转移到另一个任务或领域。技术,如转移学习(将所学到的洞察力从一个任务/领域转移到另一个任务/领域)或一次尝试学习(将学习转移到极致,只有一个或没有相关的例子进行学习)-使他们“精益的数据”学习技术。同样,通过模拟或插值合成新数据有助于获得更多的数据,从而增强现有数据以改进学习。
为何重要:使用这些技术,我们可以解决各种各样的问题,特别是那些历史数据较少的问题。期望看到更多的精益数据和扩展数据,以及应用于广泛业务问题的不同类型的学习。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。