
课程咨询: 400-996-5531 / 投诉建议: 400-111-8989
认真做教育 专心促就业
随着互联网的不断发展,越来越多的人都在学习计算机编程开发等互联网技术知识,而本文我们就通过案例分析来简单了解一下,软件开发常见缓存问题与解决方法。
1、缓存颠簸问题
缓存的颠簸问题,有些地方可能被成为“缓存抖动”,可以看做是一种比“雪崩”更轻微的故障,但是也会在一段时间内对系统造成冲击和性能影响。一般是由于缓存节点故障导致。业内推荐的做法是通过一致性Hash算法来解决。
2、缓存的雪崩现象
缓存雪崩就是指由于缓存的原因,导致大量请求到达后端数据库,从而导致数据库崩溃,整个系统崩溃,发生灾难。导致这种现象的原因有很多种,上面提到的“缓存并发”,“缓存穿透”,“缓存颠簸”等问题,其实都可能会导致缓存雪崩现象发生。
这些问题也可能会被恶意攻击者所利用。还有一种情况,例如某个时间点内,系统预加载的缓存周期性集中失效了,也可能会导致雪崩。为了避免这种周期性失效,可以通过设置不同的过期时间,来错开缓存过期,从而避免缓存集中失效。
从应用架构角度,我们可以通过限流、降级、熔断等手段来降低影响,也可以通过多级缓存来避免这种灾难。
此外,从整个研发体系流程的角度,应该加强压力测试,尽量模拟真实场景,尽早的暴露问题从而防范。
3、缓存无底洞现象
目前主流的数据库、缓存、Nosql、搜索中间件等技术栈中,都支持“分片”技术,来满足“高性能、高并发、高可用、可扩展”等要求。有些是在client端通过Hash取模(或一致性Hash)将值映射到不同的实例上,有些是在client端通过范围取值的方式映射的。当然,也有些是在服务端进行的。
但是,每一次操作都可能需要和不同节点进行网络通信来完成,实例节点越多,则开销会越大,对性能影响就越大。
主要可以从如下几个方面避免和优化:
1.数据分布方式
有些业务数据可能适合Hash分布,而有些业务适合采用范围分布,这样能够从一定程度避免网络IO的开销。
2.IO优化
可以充分利用连接池,NIO等技术来尽可能降低连接开销,增强并发连接能力。
3.数据访问方式
一次性获取大的数据集,会比分多次去获取小数据集的网络IO开销更小。
当然,缓存无底洞现象并不常见。在绝大多数的公司里可能根本不会遇到。
据访问方式**
一次性获取大的数据集,会比分多次去获取小数据集的网络IO开销更小。
当然,缓存无底洞现象并不常见。在绝大多数的公司里可能根本不会遇到。
【免责声明】:本内容转载于网络,转载目的在于传递信息。文章内容为作者个人意见,本平台对文中陈述、观点保持中立,不对所包含内容的准确性、可靠性与完整性提供形式地保证。请读者仅作参考。更多内容请加danei0707学习了解。欢迎关注“达内在线”参与分销,赚更多好礼。